×

[Comment] RISK stratification in paediatric Crohn’s disease

“Speak up. Step up. Stand out.” With this slogan for the fifth annual Crohn’s and Colitis Awareness Week, the Crohn’s & Colitis Foundation of America was asking everyone to raise awareness of Crohn’s disease and ulcerative colitis. Despite the invisible nature of these incurable diseases, patients with inflammatory bowel disease have symptoms including severe abdominal pain, weight loss, and diarrhoea. The onset of Crohn’s disease is characterised most often by an inflammatory phenotype; most patients develop stricturing or penetrating complications, or both, over time.

[Comment] From arterial ageing to cardiovascular disease

Although cardiovascular disease is one of the most prevalent and studied diseases in high-income countries, its aetiology has not been fully unveiled. Study of its pathophysiology in other regions will help develop a greater understanding of the disease.

Prevalence of microcephaly in an Australian population-based birth defects register, 1980–2015

The known Microcephaly has recently received increased attention because it is associated with congenital Zika virus infection. The World Health Organization recommends that countries at risk of Zika virus transmission collate baseline data on the historical prevalence of microcephaly. 

The new We report the prevalence and characteristics of microcephaly in a geographically defined Australian population over a 35-year period. Significant rate differences between Aboriginal and non-Aboriginal births were identified. 

The implications Our study provides a useful baseline that will allow changes in microcephaly prevalence to be measured, and raises important matters for consideration by other jurisdictions reviewing their birth defects surveillance systems. 

Microcephaly is a birth defect in which a child’s head is smaller than expected for their age, sex and ethnicity; there are, however, varying operational definitions of how much smaller (eg, head circumference below the first or third percentile, or more than two or three standard deviations below the mean value). The lack of a universally accepted definition complicates the comparison of prevalence estimates, which range from 2 to 12 per 10 000 live births in the United States,1 0.5 to 10 per 10 000 total births in EUROCAT registries (source: http://www.eurocat-network.eu/accessprevalencedata/prevalencetables), and 2 to 6 per 10 000 total births in Australia.24

Known causes of microcephaly include genetic conditions, metabolic diseases, teratogens (eg, alcohol), severe malnutrition (eg, extreme placental insufficiency), and transplacental infections.5 For many children the cause is unknown.

Microcephaly has recently gained increased attention because of its association with congenital Zika virus infection.6 It is predicted that more than 2.2 billion people live in areas where there is a risk of Zika virus infection.7 Local transmission has recently been reported in Singapore8 and in other common travel destinations for Australians.9 The most common vector, the mosquito Aedes aegypti, is found in northern and central Queensland; although local transmission of Zika virus has not been reported, returning travellers with Zika viraemia could infect local mosquitoes and thereby cause a local outbreak. A. aegypti was once present in other Australian states and territories, and there is concern that the mosquito could become re-established outside Queensland.10

Because of the many travellers returning from Zika-affected countries and the potential for Zika virus transmission to become established in Australia, we report baseline data on the prevalence and characteristics of microcephaly in a geographically defined Australian population over a 35-year period (1980–2015).

Methods

Cases of microcephaly were identified in the Western Australian Register of Developmental Anomalies (WARDA), a population-based statutory register with high ascertainment of developmental anomalies (cerebral palsy and birth defects).3,11 Birth defects are defined as structural or functional abnormalities present from conception or before the end of pregnancy and ascertained after a live birth (diagnosed by 6 years of age), stillbirth (minimum 20 weeks’ gestation), or a pregnancy terminated because of detected fetal anomalies (regardless of gestational age). Each defect (up to ten per case) is coded according to the British Paediatric Association extension to the International Classification of Diseases, ninth revision (BPA–ICD9).12

WARDA defines microcephaly as an occipito-frontal head circumference below the third percentile or more than two standard deviations (SDs) below the mean sex- and age-appropriate distribution curve. Any known primary cause (eg, infection, clinical syndrome) is recorded, but the head circumference measurements are not recorded. All identified cases fulfilled the third percentile criterion; either the head circumference measurement was validated by WARDA staff, or the notifier (specialist, genetics services, neonatal units) confirmed applying this criterion. The definition and registration criteria have not changed since 1980.

We identified all cases of microcephaly (BPA–ICD9, 742.10) recorded during January 1980 – December 2015. Each case was reviewed and classified according to aetiology:

  • cause unknown;

  • microcephaly associated with a chromosomal defect;

  • monogenic disorder known to affect head size;

  • known environmental cause (eg, fetal alcohol spectrum disorder [FASD]);

  • congenital infection; or

  • other cause.

We also grouped cases according to whether microcephaly was the only defect (“isolated”), or further major birth defects were reported (“associated”). We examined the age at diagnosis and notification sources.

Microcephaly prevalence was defined as the total number of cases (in live births, stillbirths and terminations of pregnancy for fetal anomaly) divided by the number all births in WA, expressed as number per 10 000 births. Tabulated denominator data for all WA live and stillbirths of at least 20 weeks’ gestation during the study period were obtained from the statutory WA Midwives Notification System. The average annual change in prevalence was calculated by Poisson regression with an offset term. Birth prevalence rates were analysed according to sex, mother’s Aboriginal status, region of residence, known v unknown cause, and isolated v associated microcephaly. We examined associated defects by organ system in cases with known and unknown causes. The prevalence of microcephaly of known and unknown cause in Aboriginal births (5.7% of births during the study period) was compared with that in non-Aboriginal births as prevalence ratios (PRs) with 95% confidence intervals (CIs). Analyses were performed in SPSS 23 (IBM) and EpiBasic (Aarhus University, Denmark).

Ethics approval

Ethics approval was obtained from the Human Research Ethics Committee of the WA Health Department (reference, 2016/19).

Results

Among 963 126 births during 1980–2015, 478 cases of microcephaly were ascertained, a prevalence of 5.0 per 10 000 births (95% CI, 4.53–5.43). For births during 1980–2009 (ie, with at least 6 years’ follow-up and therefore with complete case ascertainment), 416 cases were identified, a prevalence of 5.5 per 10 000 births (95% CI, 4.95–6.02), or 1 in 1830 births.

Of the cases from 1980–2009, 389 (93.5%) involved live births; there were seven stillbirths (1.7%) and 20 terminations of pregnancy for fetal anomaly (4.8%). A cause of microcephaly was identified in 186 cases (45%), and more frequently for Aboriginal (64 cases, 70%) than non-Aboriginal births (122, 38%). The most frequent known cause in Aboriginal births was FASD (11 per 10 000 births; 95% CI, 8.2–14.6); in non-Aboriginal births the most frequent causes were monogenic disorders (0.68 per 10 000 births; 95% CI, 0.51–0.90) and chromosomal defects (0.59 per 10 000 births; 95% CI, 0.42–0.79) (Box 1).

The prevalence of microcephaly of unknown cause was higher among Aboriginal than non-Aboriginal births (6.1 v 2.8 per 10 000 births; PR, 2.2; 95% CI, 1.38–3.22); this was also true for each type of known cause, but was statistically significant only for known environmental (PR, 200; 95% CI, 73–756) and infectious causes (PR, 4.2; 95% CI, 1.40–10.6) (Box 1).

There was no significant temporal trend in microcephaly prevalence during 1980–2009 (Wald χ2 test, P = 0.23; Box 2). The prevalence of microcephaly of unknown cause declined from 3.4 per 10 000 births (95% CI, 2.7–4.2) during 1980–1989 to 2.6 per 10 000 births (95% CI, 2.0–3.2) during 2000–2009, a mean decline of 1.3% per year (95% CI, –2.4% to –0.2%; P = 0.02); that of microcephaly with a known cause increased by a mean 0.4% per year (95% CI, –1.3% to 2.0%; P = 0.67). The average annual increases in the prevalence of microcephaly associated with chromosomal defects (0.6%; 95% CI, –2.1% to 3.4%; P = 0.64), monogenic disorders (0.6%; 95% CI, –2.2% to 3.4%; P = 0.67), and environmental causes (2.6%; 95% CI, –0.3% to 5.4%; P = 0.08) were statistically non-significant. We found a significant 5.6% average annual decline in the prevalence of microcephaly associated with congenital infection (95% CI, –10.0% to –1.1%; P = 0.01); the change was evident for both Aboriginal (4.4% decline; 95% CI, –12.9% to 4.2%; P = 0.32) and non-Aboriginal births (6.0% decline; 95% CI, –10.6% to –1.5%; P = 0.008), but was statistically significant only for non-Aboriginal births.

The prevalence of microcephaly was similar for male and female children, but higher for Aboriginal than non-Aboriginal Australians (PR, 4.5; 95% CI, 3.55–5.73; Box 1). Prevalence was much higher in remote regions, particularly that of microcephaly of known cause (Box 3); this was influenced by the higher proportion of Aboriginal births (and FASD) in these areas (data not shown).

The 81 cases of isolated microcephaly (20% of all cases) were all of unknown cause. All 186 cases with a known cause were associated with other major birth defects, compared with 65% of the 230 cases without a known cause (Box 4).

The overall prevalence of isolated microcephaly declined by a mean 3.4% per year (95% CI, –5.3% to –1.4%; P = 0.001); there was no significant change in the prevalence of microcephaly with associated defects (P = 0.86) (Box 2). Temporal changes in the availability of folate supplements and the introduction of folic acid fortification of some foods were not associated with changes in the prevalence of microcephaly (data not shown).

Microcephaly was diagnosed after the age of 12 months in 27% of cases, increasing from 19% during the 1980s to 29% in the 1990s and 31% during 2000–2009 (Box 5). Isolated cases were more likely to be diagnosed later (35% after 12 months of age), as were cases with a known cause (30% after 12 months of age). For most cases with a known cause diagnosed after 12 months of age, the cause was FASD (52%).

The major notification sources were geneticists, paediatricians, and obstetric and paediatric hospitals. While paediatric and obstetric hospitals maintained steady notification rates, genetics services played an increasingly important role; they contributed more than one-quarter of reported cases during 2000–2009 (data not shown). Most cases were notified by more than one source (mean, 2.8 notifications per case [SD, 1.76]; median, 2 notifications per case [interquartile range, 1–4]).

Discussion

Our study, the first descriptive epidemiological investigation of microcephaly in Australia, provides baseline data on the prevalence of microcephaly in Western Australia over a 35-year period. Most cases of microcephaly were in live-born infants (93.5%), and the overall prevalence was 5.5 per 10 000 births, with annual rates ranging between 2.9 and 7.7 per 10 000 births.

There are few published epidemiological studies of microcephaly, and comparisons are complicated by differences in case definition, period of ascertainment, pregnancy outcomes included, underlying population differences, and environmental variables. These difficulties were illustrated by a recent report of important variations in the prevalence of microcephaly recorded by 16 European birth defects registries.13 In Australia, national estimates are difficult because of major differences between states in the scope of birth defects data collections.14 The most recent national data (for births during 2002–2003),2 which did not include data from the Northern Territory, found a lower prevalence of microcephaly (1.9 per 10 000 births) than we did. Our results, however, are similar to those reported by other registers using the same case definition and equivalent follow-up periods, including the Atlanta Congenital Defects Program1 and the South Australian Register4 (5.0–5.2 per 10 000 births).

Our prevalence estimates, and those reported by birth defects registries in other countries, are well below the rate of 230 cases per 10 000 births expected when a case definition of an occipito-frontal head circumference more than two SDs below the mean for age and sex is applied. This implies that specialists are moderating their notifications according to criteria other than head circumference; these may include notifying cases when they have clinical concern about the child, or when there is an association with a particular cause (eg, trisomy 18). This moderation probably operates in most surveillance systems, including our own. Although head circumference or percentile measures were checked before registering a case of microcephaly in the database, the measurements themselves are not recorded by WARDA. Adding these data to the collection is planned, facilitating assessment of case severity and comparisons with registries using different registration criteria.

We identified a cause for microcephaly in 45% of cases, and more frequently for births to Aboriginal (70%) than to non-Aboriginal mothers (38%). The figure for non-Aboriginal births was similar to those reported from Atlanta (40%)15 and by a German clinic-based study in which the most common cause was genetic in nature (29% of 680 cases;16 similar to the 28% of non-Aboriginal births in our study). We found an average annual decline in microcephaly cases of unknown cause of 1.3%; this may be attributable to improved genetic diagnostic technologies and increasing diagnosis of FASD, factors that may also account for the declining number of cases of isolated microcephaly.

Our results highlight the contribution of FASD to microcephaly in Aboriginal children, with a prevalence of FASD-associated microcephaly (11 per 10 000 births) 260 times that for non-Aboriginal births (0.04 per 10 000 births). FASD also contributed to higher prevalence rates in remote areas of WA. A recent study found that the prevalence of fetal alcohol syndrome in remote WA Aboriginal communities among 7–8-year-old children was 12%, and that 69% of these children had microcephaly;17 another study reported a twofold increase in FASD notifications to WARDA for both Aboriginal and non-Aboriginal births during 1980–2010, coinciding with increased state and national awareness of FASD.18 Nevertheless, FASD is still underdiagnosed, and this may partly explain the higher prevalence of microcephaly of unknown cause in Aboriginal children (6.1 v 2.8 per 10 000 non-Aboriginal births), and may also account for some cases of unknown cause in non-Aboriginal infants. The higher prevalence of microcephaly of unknown cause among Aboriginal Australians may also be related to the relative lack of access to or engagement with health care services and the paucity of genomic reference data for Aboriginal Australians.19 The release of the Australian guide for diagnosing FASD20 and the Partnership Grants (“Models and quality of genetic health services for Aboriginal and Torres Strait Islander people”) co-funded by the National Health and Medical Research Council and the Lowitja Institute may advance aetiological investigations. In addition, a major research program for investigating the diagnosis, prevention and management of FASD is underway in WA.21

In 27% of cases, microcephaly was diagnosed in children more than 12 months old. This large proportion would be missed were ascertainment periods shorter. This factor may be particularly important when differentiating cases of known and unknown cause, especially when microcephaly is associated with conditions (such as FASD and specific genetic anomalies) that are often diagnosed at a later age.18

Further major birth defects were associated with 80% of cases of microcephaly. The most frequent in cases of unknown cause were those affecting the nervous system (61% of associated defects), including neural tube defects (13%). The US National Birth Defects Prevention Network suggests excluding microcephaly associated with neural tube defects, holoprosencephaly, craniosynostosis, and conjoined twins.5 We favour broader inclusion criteria, especially in light of the evolving understanding of the full spectrum of defects that may be associated with congenital Zika infection. One in five definite or probable cases of congenital Zika syndrome in a large case series from Brazil were associated with brain abnormalities in infants without microcephaly, suggesting that surveillance should not focus on microcephaly alone.22 Other defects associated with Zika infection include intracranial calcifications, craniofacial malformations, severe arthrogryposis, and eye defects.23 WARDA includes each of these in its data collection.

Zika virus is the first mosquito-borne virus associated with human birth defects, and is also sexually transmissible. A recent editorial in the MJA24 highlighted the robust Australian systems that enable rapid responses to newly identified communicable diseases, but our capacity for monitoring birth defects was not discussed. Medical practitioners have been advised to ask pregnant women about their recent travel history and to offer testing to those who have visited Zika-affected areas. Birth defect registries that record the causes of birth defects are therefore likely to capture cases of microcephaly or other defects associated with Zika virus exposure in returned travellers. Our capacity to detect changes in the prevalence of microcephaly caused by local transmission of the virus is less clear, as infection is frequently asymptomatic, and the collection of data on birth defects in this country is not standardised, with wide variability between states in case ascertainment.14

As remote regions in Northern Australia either already harbour or are at risk of harbouring A. aegypti mosquitoes, enhanced monitoring of birth defects in these areas (and also of FASD) is important. The Australian Paediatric Surveillance Unit project for the surveillance of microcephaly in infants under 12 months of age is important for responding to the challenges of geographically equitable case ascertainment.25

Attempts to standardise state and territory birth defects data collections have been unsuccessful.26 In the absence of national data, our study provides a useful baseline for measuring changes in microcephaly prevalence, and highlights important matters for consideration by other jurisdictions reviewing their birth defects surveillance systems.

Box 1 –
Prevalence of microcephaly (per 10 000 births) by cause and Aboriginal status of the mother, Western Australia, 1980–2009

Cause

All cases


Aboriginal


Non-Aboriginal


Prevalence ratio (95% CI)

Number

Prevalence (95% CI)

Number

Prevalence (95% CI)

Number

Prevalence (95% CI)


Total number of cases

416

5.5(4.95–6.02)

91

21(16.5–25.2)

325

4.5(4.05–5.05)

4.5(3.55–5.73)

Unknown cause

230 (55%)

3.0(2.64–3.44)

27

6.1(4.01–8.86)

203

2.8(2.46–3.25)

2.2(1.38–3.22)

Known cause

186 (45%)

2.4(2.10–2.82)

64

14(11.11–18.43)

122

1.7(1.41–2.03)

8.5(6.17–11.6)

Chromosomal

47 (11%)

0.62(0.45–0.82)

5

1.1(0.37–2.63)

42

0.59(0.42–0.79)

1.9(0.59–4.86)

Monogenic

54 (13%)

0.71(0.53–0.93)

5

1.1(0.37–2.63)

49

0.68(0.51–0.90)

1.6(0.51–4.12)

Environmental

53 (13%)

0.70(0.52–0.91)

49*

11(8.2–14.6)

< 5

0.06(0.01–0.14)

200(73–756)

Fetal alcohol spectrum disorder*

52

0.68(0.51–0.90)

49*

11(8.2–14.6)

< 5

0.04(0.01–0.12)

260(85–1320)

Infectious

29 (7%)

0.38(0.26–0.55)

6*

1.4(0.50–2.94)

23

0.32(0.20–0.48)

4.2(1.40–10.6)

Cytomegalovirus*

24

0.32(0.20–0.47)

5*

1.1(0.37–2.63)

19

0.26(0.16–0.41)

4.2(1.24–11.8)

Other infections

5

0.07(0.02–0.15)

< 5

0.22(0.01–1.26)

< 5

0.06(0.01–0.14)

4.0(0.08–40.8)

Other cause

< 5

0.05(0.01–0.14)

0

< 5

0.06(0.01–0.14)


* One child was diagnosed with both cytomegalovirus infection and fetal alcohol spectrum disorder.

Box 2 –
Prevalence of microcephaly in Western Australia, 1980–2015: overall prevalence, and prevalence of cases with and without associated anomalies*


* From 2009, there is less than 6 years’ follow-up of births, so that ascertainment of cases will be incomplete.

Box 3 –
Prevalence (per 10 000 births) of microcephaly in Western Australia, 1980–2009

All cases


Microcephaly of known cause


Microcephaly of unknown Cause


Number

Prevalence (95% CI)

Number

Prevalence (95% CI)

Number

Prevalence (95% CI)


All

416

5.5 (4.95–6.02)

186

2.4 (2.10–2.82)

230

3.0 (2.64–3.44)

Sex

Male

199

5.1 (4.41–5.85)

85

2.2 (1.74–2.69)

114

2.9 (2.41–3.51)

Female

216

5.8 (5.08–6.66)

101

2.7 (2.22–3.31)

115

3.1 (2.56–3.72)

Missing data

1

1

Aboriginal status of mother

Aboriginal

91

21 (16.52–25.2)

64

14 (11.11–18.4)

27

6.1 (4.01–8.86)

Non-Aboriginal

325

4.5 (4.05–5.05)

122

1.7 (1.41–2.03)

203

2.8 (2.46–3.25)

Residential location*

Metropolitan

261

4.8 (4.24–5.42)

103

1.9 (1.55–2.30)

158

2.9 (2.47–3.40)

Rural

74

5.2 (4.12–6.50)

31

2.2 (1.49–3.12)

43

3.0 (2.21–4.10)

Remote

81

11 (8.56–13.4)

52

6.9 (5.17–9.07)

29

3.9 (2.59–5.54)


* According to the postcode of the mother as recorded by WARDA at the time of her child’s birth. The eight WA Department of Health residential location categories were grouped into three classes: metropolitan; rural (Great Southern, South-West, Wheatbelt, Midwest Murchison); and remote (Kimberley, Pilbara–Gascoyne, Goldfields–Southeast).

Box 4 –
Association of microcephaly (of known and unknown cause) with other congenital anomalies, Western Australia, 1980–2009

All cases

Microcephaly of known cause

Microcephaly of unknown Cause


Total number of cases

416

186

230

Isolated microcephaly

81 (20%)

0

81 (35%)

Microcephaly associated with other defects

335 (80%)

186 (100%)

149 (65%)

Associated defects by diagnostic category

335

186

149

Nervous system, apart from microcephaly

141 (34%)

50 (27%)

91 (61%)

Neural tube defects

25 (6%)

6 (3%)

19 (13%)

Chromosomal

47 (11%)

47 (25%)

0

Cardiovascular

49 (12%)

29 (16%)

20 (13%)

Respiratory

15 (4%)

10 (5%)

5 (3%)

Gastrointestinal

48 (12%)

20 (11%)

28 (19%)

Musculoskeletal

72 (17%)

35 (19%)

37 (25%)

Urogenital

68 (16%)

43 (23%)

25 (17%)

Eye

36 (9%)

24 (13%)

12 (8%)

Ear, face, neck

8 (2%)

3 (2%)

5 (3%)

Integument

4 (1%)

2 (1%)

2 (1%)

Other major diagnoses

158 (38%)

142 (76%)

16 (11%)

Monogenic condition

58 (14%)

54 (29%)

4 (3%)

Fetal alcohol spectrum disorder

52 (12%)

52 (28%)

0


Box 5 –
Number of cases of microcephaly in Western Australia, 1980–2015, by age at diagnosis

Age at diagnosis

Follow-up period


At least 6 years (416 cases)


Less than 6 years (62 cases)

1980–1989

1990–1999

2000–2009

2010–2015


Prenatal

16 (12%)

25 (17%)

18 (13%)

18 (29%)

Within first month of life

47 (36%)

49 (33%)

40 (29%)

16 (26%)

> 1 month to 1 year

33 (26%)

26 (18%)

36 (26%)

16 (26%)

> 1 year to 3 years

16 (12%)

24 (16%)

27 (19%)

7 (11%)

> 3 years to 6 years

9 (7%)

19 (13%)

17 (12%)

3 (5%)

Post mortem

8 (6%)

4 (3%)

2 (1%)

2 (3%)


PM to address national conference

Prime Minister Malcolm Turnbull will address the Saturday morning session of the AMA National conference, as the event’s keynote speaker.

The 2017 AMA National Conference will take place at the Sofitel on Collins, Canberra, from 27-29 May.

National political and medical leaders and experts will present at this year’s conference to cover a diverse range of issues central to AMA members.  

The 2017 AMA National Conference Program will discuss and debate topical medical, political and ethical issues affecting health and care in Australia.

  • Tackling Obesity – will deliver opinion from a range of experts into the global obesity epidemic, including how AMA policy can help shape an effective and informed method of address by the Australian Government.
  • Threats Beyond Borders – is an interactive panel discussion on potential infectious diseases that could cross Australian borders and will explore the role of a National Centre for Disease Control (CDC).
  • Improving Australia’s organ donation rate – will examine ethical and practical considerations in how to match Australia’s leading global role of successful organ transplant outcomes with our need to increase organ donation rate.
  • Doctors’ Health and Wellbeing – will discuss emerging issues relating looking after doctors’ health during medical training and throughout their professional careers. The session will explore the success and otherwise of initiatives being implemented in this area.

Pre-conference masterclass on offer – Limited places only

In conjunction with the 2017 AMA National Conference, the Pam McLean Centre and will provide a pre-conference masterclass open to all doctors on Thursday 25 May, also held at the Sofitel on Collins, Melbourne.

The masterclass on ‘Dealing with Bad health News’ will be an interactive, evidence based full-day masterclass designed to provide a safe learning environment for participants to explore different communication approaches to help patients deal with bad health news.

Under the guidance of an expert facilitator, Professor Stewart Dunn (Director, Pam McLean Centre), participants will develop skills in interpreting human behaviour by improving the way they recognise, identify and respond to emotional reactions.

This is an accredited activity for RACGP Category 1 and ACRRM Core PDP points.

Pre-conference masterclass details are:

  • Time: 9:30 – 5:00 
  • Date: Thursday, May 25, 2017
  • Venue: Sofitel, 25 Collins Street, Melbourne, VIC 3000
  • Tickets: Conference attendees – $660, AMA members – $770, non-AMA members – $880

 For more information about the whole conference visit: https://natcon.ama.com.au/  

Mapping HIV virus for more effective treatment

Deakin University scientists, with support from CSIRO, have revealed for the first time the individual protein blocks that form the HIV virus.

It is hoped that the research will enable the development of effective and affordable new antivirals to treat millions of people living with HIV.

The exact way the virus formed had eluded scientist for the past 30 years so that current antivirals created only a partial understanding of how the pieces joined together.

“Inadequate supply of anti-HIV drugs in low- and middle-income countries has created an ideal breeding ground for the emergence of drug resistant HIV, which threatens the long-term effectiveness of patient care using existing anti-HIV agents,” said senior researcher Professor Johnson Mak, from Deakin University’s Centre for Molecular and Medical Research.

Professor Mak hoped his team’s work would go on to inform the development of new drugs that work by interfering with the formation of infectious virus particles – essentially blocking HIV from taking a hold on patients.

HIV continues to be a major global public health issue.  UNAIDs estimates in 2015, an estimated 36.7 million people were living with HIV, there were 2.1 million new infections worldwide and in the same year 1.1 million people died of AIDS-related illnesses.

The AMA this year launched its updated position statement on blood borne viruses (BBVs).  The statement expressed the AMA’s support for the availability of new, regularly evaluated treatments for BBVs. 

Further, it acknowledged that prevention, treatment, and management of BBVs is a public health priority that requires a coordinated and strategic policy response, with national leadership driving actions to sustain improvements in their prevention, detection, and treatment. A copy of the statement can be found at: position-statement/blood-borne-viruses-bbvs-2017      

Meredith Horne

UHT milk used to study age-related diseases

A new study on UHT milk jointly undertaken by ANU, CSIRO, University of Wollongong and international researchers is helping scientists to better understand Alzheimer’s, Parkinson’s and type 2 diabetes – opening the door to improved treatments for these age-related diseases.

The research examined how milk proteins changed structurally when heated briefly to around 140 degrees to produce UHT milk, causing the gelling phenomenon with long-term storage. 

These proteins are the same type of protein clusters found in plaque deposits in cases of Alzheimer’s and Parkinson’s.

Fifty different diseases have been recognised as being associated with protein aggregation.

“Parkinson’s, dementia and type 2 diabetes are big problems for the ageing population in Australia and many other countries around the world,” said Professor John Carver from the ANU Research School of Chemistry.

“Any means we can understand these proteins, their structure and why they form amyloid fibrils has the potential for developing treatments.”

Aging relating diseases affect about 500 million people worldwide and is set to increase over the next 20 to 30 years. 

Population projections by the Australian Treasury forecasts the number of Australians aged 65 is increasing rapidly, from 2.5 million in 2002 to 6.2 million in 2042, or from 13 per cent of the population to 25 per cent.

The collaborative research was published in the published in the journal Small.  The research does not suggest UHT milk can cause these age-related diseases.

Meredith Horne

[Correspondence] Stoop to conquer: preventing stroke and dementia together

The timely editorial in The Lancet (Dec 3, p 2713)1 calls for a broadening of our approaches to dementia research. Treatment and prevention of cerebrovascular diseases appear to be the most obvious examples. Covert cerebrovascular disease can contribute to or trigger neurodegeneration. Alzheimer’s and other neurodegenerative diseases are common in the elderly, most of whom do not develop dementia. However, if an individual has a component of vascular disease, which occurs in 80% of patients with Alzheimer’s disease, it doubles the chances of developing dementia.

[Correspondence] Health systems resilience: meaningful construct or catchphrase?

Resilience is an emerging concept in the health systems discourse, further highlighted by infectious disease outbreaks including Ebola virus disease, Zika virus disease, and Middle East respiratory syndrome. However, the definition and exploration of resilience within health systems research remains a source of debate, as underscored at the recent 4th Global Symposium on Health Systems Research; Vancouver, BC, Canada; Nov 14–18, 2016.

Treatment of latent tuberculosis infections in the Darwin region

As it is estimated that one-third of the world population have a latent tuberculosis infection (LTBI), treatment to prevent active tuberculosis is an essential component of the World Health Organization “End TB Strategy”.1

To inform and evaluate practice, we undertook a cohort study of people in the Darwin region (estimated population, 140 000; 25% Indigenous Australians, 25% overseas-born residents) diagnosed with LTBI according to Northern Territory guidelines2 during June 2013 – July 2014. Diagnosis was based on a positive Mantoux test result2 and the absence of radiological and clinical evidence for active tuberculosis. Demographic and treatment acceptance and compliance data were collected from the sole treatment centre serving the region. The recommended therapy was 9 months’ treatment with isoniazid, or 4 months’ treatment with rifampicin if isoniazid was contraindicated.2 Treatment adherence was assessed monthly on the basis of clinic attendance, self-reported adherence, and collection of the medication.

During the study period, 573 people were diagnosed with LTBI, of whom 422 (74%) were overseas-born, 81 (14%) were Indigenous Australians, and 70 (12%) were non-Indigenous Australians. The age range was 0–77 years (median, 32 years); 61% were male. The proportions of people diagnosed with LTBI who were offered, accepted and completed treatment are shown in the Box. Uncertainty on the part of the physician about an individual’s ability to complete treatment was the most common reason for not offering treatment, including to members of transient populations, such as those with short prison sentences and immigration detainees. Most patients who did not complete therapy had been lost to follow-up, either moving interstate (31%) or defaulting without a reason being recorded (25%). Outcome data for people moving interstate were not collected, as there are no mechanisms for routinely sharing such data between Australian states, and forwarding addresses were unavailable. The 55% completion rate therefore probably underestimates the proportion of those who completed treatment.

Parents and guardians of all 28 children under 6 years of age accepted treatment for their children, 12 of whom (43%) completed treatment, including six of 11 who were contacts of people with active tuberculosis, four of 16 immigration detainees, and three of seven refugees. Five children did not, however, commence treatment (three immigration detainees, two refugees), and 11 moved interstate without completing treatment. Nine of those moving interstate were immigration detainees, highlighting the transiency of this population and the uncertainty of outcomes arising from a lack of feedback between states about LTBI treatment compliance.

Indigenous Australians were significantly more likely to accept treatment than overseas-born people (odds ratio [OR], 4.46; 95% CI, 1.55–12.8) or non-Indigenous Australians (OR, 7.69; 95% CI, 2.33–25.4). Overseas-born patients were less likely to complete treatment than Indigenous (OR, 1.34; 95% CI, 0.66–2.72) or non-Indigenous Australians (OR, 1.38; 95% CI, 0.56–3.41). This finding, however, was not statistically significant, and potentially confounded by the fact that all 36 patients who moved interstate were overseas-born, so that completion for this population was possibly higher.

Similar to the findings of other Australian studies, 45% of patients who accepted treatment did not complete it, representing missed opportunities for preventing disease.3,4 Uncertainty about treatment adherence by overseas-born people moving interstate indicates that national data sharing and collaboration between tuberculosis services should be improved. LTBI treatment could then be evaluated according to WHO recommendations, and targeted measures to improve treatment outcomes for this high-risk population implemented.1,3 Further, the reasons for not completing treatment were often unknown; communicating with non-adherent patients would identify problems and enable targeted interventions for improving compliance.

Encouragingly, we found high uptake of treatment by Indigenous Australians, which may help reduce the disproportionately high incidence of active tuberculosis in this population, compared with non-Indigenous Australians.

Box –
The proportions of people diagnosed with latent tuberculosis infection who were offered, accepted and completed treatment, Darwin, June 2013 – July 2014

Total

Age group (years)


0–5

6–15

16–35

> 35


People diagnosed with a latent tuberculosis infection (LTBI)

573

32

56

244

241

Reasons for LTBI screening: asylum seeker/refugee (24%); health care worker (19%); tuberculosis contact (17%); (pre-)immunosuppression (7%); school student (overseas-born) (6%); medical referral (6%); incarcerated (6%); immigration health undertaking (3%); defence force personnel (3%); other (9%)

Offered treatment

374 of 573 (65%)

28 (88%)

48 (86%)

153 (63%)

145 (60%)

Reasons for not offering treatment: short term detention/prison sentence (physician uncertain about future adherence) (37%); low risk (35%); excessive alcohol use or liver disease (6%); prior LTBI treatment (4%); pregnant/lactation (4%); depression (2%); other (14%)

Accepted treatment

265 of 374 (71%)

28 (100%)

38 (79%)

103 (67%)

96 (66%)

Completed treatment

147 of 265 (55%)

12 (43%)

26 (68%)

56 (54%)

53 (55%)

Reasons for incomplete treatment: moved away from treatment centre (31%); no reason given/defaulted (25%); did not commence treatment (20%); elevated liver enzyme levels (5%); peripheral neuropathy (3%); patient died of disease other than tuberculosis (3%); rash (2%); other (12%)


Trends in the prevalence of hepatitis B infection among women giving birth in New South Wales

The known In NSW, HBV vaccination of infants born to women at high risk commenced in 1987, and catch-up vaccination programs for adolescents in 1999. 

The new Among women giving birth, targeted infant and school-based adolescent vaccination programs were associated with an 80% decline in HBV prevalence among Indigenous women by 2012. HBV prevalence in Indigenous women was higher in rural and remote NSW than in major cities, but among non-Indigenous and overseas-born women it was higher in cities. 

The implications HBV prevention programs for Indigenous Australians should focus on regional and remote NSW and those for migrant populations on major cities. Antenatal HBV screening can be used to monitor population HBV prevalence and the impact of vaccination programs. 

Chronic infection with the hepatitis B virus (HBV) can cause serious liver disease, and contributes worldwide to a significant burden of disease. Most chronic infections are acquired early in life, predominantly by maternal transmission.1 While its prevalence in Australia is generally considered to be low (under 2%), the prevalence of HBV infections in Aboriginal and Torres Strait Islander (hereafter: Indigenous)2 people and in some migrant populations3 has been substantial.

A three-dose vaccine that is 95% effective in preventing HBV infection4 has been available in Australia since the early 1980s.5 In New South Wales, a targeted HBV vaccination program commenced in 1987.6 The program offered vaccination for babies born to parents from population groups considered to be at higher risk of HBV infection (defined as HBV prevalence ≥ 5%), including Indigenous Australians.7 In 1997, the National Health and Medical Research Council recommended universal HBV catch-up vaccination of children aged 10–16 years;8 in NSW, this was provided from 1999 to adolescents born since 1983 by general practitioners.9 The National Immunisation Program Schedule included universal infant HBV vaccination from May 2000. During 2004–2013, this was complemented by a NSW-wide school-based HBV vaccination catch-up program for year 7 students (born since 1991; online Appendix 1).5,7 In NSW, coverage through the universal infant program was reported to have exceeded 95% since 2003,10 and about 60% of eligible children not vaccinated as infants had been vaccinated through the school-based catch-up program in 2011 and 2012.11

To assess the impact of the vaccination programs on HBV prevalence in NSW, we determined its prevalence in women giving birth, as in Australia they are routinely screened for HBV during pregnancy.12 Our methodology was similar to that used in earlier studies that linked records of women giving birth and HBV infection notifications.2,3

Methods

Data sources and linkage

Data from two statutory registers were linked. The NSW Perinatal Data Collection (PDC) records all births in NSW of babies of at least 400 grams birth weight or 20 weeks’ gestation. The PDC contains details about the mother, such as year and country of birth, parity, postcode of residence, and Indigenous status, and about the birth, including the date of delivery and outcome. The NSW Notifiable Conditions Information Management System (NCIMS) is a population-based surveillance system that records reports of conditions deemed notifiable under the NSW Public Health Acts 1991 and 2010.13,14 The Act requires notification to NCIMS by any laboratory detecting HBV surface antigen (HBsAg), a marker of HBV infection, in a specimen submitted for diagnostic testing. The NCIMS records personal details, including date of birth, sex, postcode, and classification of the report as newly acquired hepatitis B infection or infection of unspecified duration (based on standard definitions15), notification date, and either the estimated onset date or date of the diagnostic test.

PDC records of women giving birth between January 1994 and December 2012 and NCIMS HBV notifications for the same period were available. Records from the two registers were linked by probabilistic matching of personal identifying details; this was conducted by the NSW Centre for Health Record Linkage (CHeReL), independently of the study investigators, to whom de-identified, linked data were provided for analysis. The reported false positive and negative rates for CHeReL linkage are about 0.5%.16

Study population and definitions

After linkage, we restricted our study population to women resident in NSW — using their postcode on the PDC record — of reproductive age (10–55 years at time of giving birth) who gave birth to their first child (ie, parity null) between January 2000 (when routine antenatal screening for HBV began17) and December 2012.

A woman was defined as having a chronic HBV infection at the delivery of her first child if there was at least one linked HBV notification in the NCIMS database that was recorded as unspecified and with a notification date earlier than the delivery date. Women with no linked HBV notifications were assumed to be not infected with HBV. Women with an HBV infection notified as being acute were excluded from the analysis, as it was unknown whether they would have cleared their acute infection or progressed to a chronic infection.

Statistical analysis

Women were categorised into four groups by their year of birth, which determined the likelihood of their being included in an HBV vaccination program: pre-vaccination era (maternal year of birth, 1981 or earlier); catch-up vaccination, predominantly GP-administered (1982–1987); at-risk newborn vaccination (1988–1991); and universal school-based catch-up and at-risk newborn vaccination (1992–1999; online Appendix 1). No women in our analyses were born during the period of universal HBV vaccination of newborns (from May 2000).

We also classified the women as Indigenous Australian, non-Indigenous Australian-born, or overseas-born women, based on their PDC record. For Indigenous status, we enhanced reporting in the PDC by linkage to other PDC records.18 Records with missing country of birth data (2090 records, 0.4% of all records) were placed in the “born overseas” category.

We calculated crude HBV prevalence for the four maternal year-of-birth categories, and used logistic regression to examine the relationship between these categories and HBV infection. We adjusted analyses for year of giving birth (in 5-year intervals) to account for possible temporal trends in HBV prevalence,2 and for the mother’s area of residence (two categories, based on residential postcode in the PDC record: major cities and regional/remote, according to the Accessibility/Remoteness Index of Australia19), as HBV prevalence in Australia varies between regions.3 The two most recent maternal year-of-birth categories (1988–1991, 1992–1999) were combined (1988–1999) for the logistic regression analysis because the numbers of records in the individual groups were small.

Ethics approval

The study was approved by the NSW Population and Health Services Research Ethics Committee (reference, 2009/11/193) and the Aboriginal Health and Medical Research Council Human Research Ethics Committee (reference, 841/12).

Results

Between January 2000 and December 2012, 482 998 women residing in NSW gave birth to their first child (PDC data); 54 were linked to an acute HBV notification and excluded from further analysis. Of the remaining 482 944 records, 11 738 (2.4%) were Indigenous Australian women, 319 629 (66.2%) were non-Indigenous Australian-born women, and 151 577 (31.4%) were born overseas. A linked unspecified HBV notification before the date of birth of their first child was available for 3383 women (HBV prevalence, 0.70%; 95% confidence interval [CI], 0.68–0.72%). HBV prevalence was estimated as 0.79% (95% CI, 0.63–0.95%) for Indigenous Australian women, 0.11% (95% CI, 0.09–0.12%) for non-Indigenous Australian-born women, and 1.95% (95% CI, 1.88–2.02%) for overseas-born women.

For Indigenous Australian women, the prevalence of HBV infection was significantly lower for those who were eligible for universal school-based or at-risk newborn vaccination (born between 1992 and 1999) than for women born during the pre-vaccination period (≤ 1981): 0.15% (95% CI, 0.00–0.35%) v 1.31% (95% CI, 0.91–1.71%; for trend, P < 0.001). For non-Indigenous Australian-born women, the prevalence also declined, but the fall was not statistically significant: from 0.10% (95% CI, 0.09–0.11%) to 0.04% (95% CI, 0.00–0.09%; for trend, P = 0.5). There was no significant trend for overseas-born women between the two periods (P = 0.1) (Box 1, online Appendix 2).

In analyses adjusted for year of giving birth and region of residence (Box 2), the proportion of Indigenous Australian women notified as having an HBV infection was 80% lower for those eligible for vaccination as part of the at-risk infant or universal school-based vaccination programs (born 1988–1999) than for women born during the pre-vaccination period (1981 or earlier) (adjusted odds ratio [aOR], 0.20; 95% CI, 0.09–0.48). There was no significant change for non-Indigenous Australian-born women (aOR, 0.87; 95% CI, 0.54–1.44). For overseas-born women, the number of notifications was significantly higher for women born during 1988–1999 than for those born before 1981 (aOR, 1.38; 95% CI, 1.15–1.67).

Box 2 also shows that HBV notifications were more frequent for Indigenous women living in regional and remote areas than for those in major cities (aOR, 2.23; 95% CI, 1.40–3.57). The opposite applied to non-Indigenous Australian-born (aOR, 0.39, 95% CI, 0.28–0.55) and overseas-born women (aOR, 0.61; 95% CI, 0.49–0.77).

The study timeframe and inclusion criteria (first births during 2000–2012) meant that the mean age of mothers was lower in later than in earlier birth year groups. After adjusting for maternal birth year groups, a significant decline in HBV notifications among Indigenous women of about 30% was still detected (aOR for each 5-year period, 0.69; 95% CI, 0.49–0.97; P = 0.03). A decline for overseas-born women was also found, but it was much smaller (aOR, 0.89; 95% CI, 0.84–0.93; P < 0.001), and there was no change for non-Indigenous Australian-born women (aOR, 0.99; 95% CI, 0.84–1.16; P = 0.90; Box 2).

To further explore the changes in HBV prevalence in overseas-born women, HBV notifications were also analysed by maternal year of birth and region of birth (Box 3). The highest proportions of women with HBV notifications were for those born in North-East Asia, South-East Asia, and sub-Saharan Africa. The small sample sizes made comparisons of trends across maternal year of birth less robust, but a consistent increase in HBV notification rates was observed for women born in North-East Asia and sub-Saharan Africa (for each trend, P < 0.001).

Discussion

This is the largest study to examine differences in HBV notification rates for women born before and after the introduction of HBV vaccination programs in Australia, analysed by country of birth, Indigenous status, and region of residence. We found that HBV notification rates for Indigenous women born after the introduction of targeted infant HBV vaccination were 80% lower than for those born earlier. For non-Indigenous Australian-born and overseas-born women there were no consistent associations between HBV notification rates and HBV vaccination programs in NSW. Despite limited data about the level of HBV vaccination coverage achieved when the at-risk newborn vaccination program was introduced in NSW in 1987, our findings suggest that it was highly successful. The estimates of HBV notification rates in Indigenous women were substantially lower among those born after 1987 than among women born before the start of the program (Box 1). It is notable that the 80% decline we report matches the 79% reduction found by a study that compared Indigenous women in the Northern Territory born before and after the introduction of universal newborn vaccination,2 suggesting that the targeted program was highly effective in reaching those at risk. The estimated fall is also similar to the results of investigations in other countries of the impact of universal newborn vaccination programs.20,21

A lack of consistent trend in HBV notifications among non-Indigenous Australian-born women might be expected, as the notification rate in this population before the introduction of vaccination was considerably lower than for Indigenous women. Further, most non-Indigenous women born during 1988–1999 would have been eligible only for school-based catch-up vaccination, which is less effective in preventing chronic disease than infant vaccination. Interpreting the relationship between birth cohorts and HBV prevalence in overseas-born women was complicated by a number of factors, including the differing prevalence of HBV in the regions from which overseas-born women migrated, their age at migration, and the lack of information about receipt of vaccination in their country of origin. When analysed by region of origin, the observed changes in notification rates could reflect either varying local uptake of infant HBV vaccination or differences in the populations that have migrated to Australia from particular regions over the 13-year study period. The smaller numbers of women involved in each group, however, limit our ability to draw conclusions.

Regional differences in HBV prevalence were also observed. Indigenous Australian women in regional and remote NSW were more likely to be HBV-seropositive than those in urban areas, whereas the reverse was true for non-Indigenous Australian-born and overseas-born women. These differences in HBV prevalence have been described previously in Indigenous Australians,2 but the reasons underlying them are unclear. The colonisation process and the institutional racial discrimination that Indigenous Australians experience affect their health outcomes, mediated by a number of different pathways, including unequal access to health care, housing and employment.22,23 As access to primary health care services relative to need is lowest in remote areas, and proportionately more Indigenous than non-Indigenous Australians live in remote areas,24 these factors may contribute to higher HBV prevalence among Indigenous women in rural and remote areas. In addition, an uncommon, more virulent HBV subgenotype circulates among Indigenous Australians in the NT, perhaps reducing the efficacy of vaccination;25 the distribution of this subgenotype in NSW, however, is unknown.

The higher prevalence of HBV among urban than regional non-Indigenous women may be related to the higher proportions of women in cities who inject drugs or are in prison, both risk factors for acute HBV infection.26 For women born overseas, the difference might be related to the fact that a greater proportion of migrants from high HBV prevalence countries (such as Asia) reside in urban than in regional and remote areas (online Appendix 3).27

It was not possible in our ecological study to take into account interactions between the effects of age and calendar year on HBV notification. Women who were born more recently, and therefore more likely to have been vaccinated, would have been younger at the time of our linkage, but also potentially subject to different risks of exposure at a given age. Including the year a woman gave birth as a factor in the regression model for Indigenous Australian women led to a small reduction in the effect of maternal birth year on HBV prevalence, and HBV prevalence was lower for more recent year of giving birth, after adjusting for maternal year of birth (Box 2). This suggests that temporal trends other than the effect of maternal birth year may have contributed to the decline in HBV notifications for Indigenous Australian women, although residual confounding related to inadequate adjustment for maternal birth year effects cannot be excluded. A similar trend, but of smaller magnitude, was seen among overseas-born women.

Antenatal screening for HBV infection enabled us to systematically assess HBV prevalence in a large population of women. Study limitations include our focus on women giving birth; our conclusions may not be generalisable to other women or to men, but we expect that the overall trends would be similar. We were unable to assess the impact of universal newborn vaccination on HBV notifications, as no women born after 2000 had given birth during the study period. Further, the ecological nature of our analyses depended on assumptions about the exposure of individuals to different vaccination strategies according to year of birth, whereas individual level vaccination data would assist us more reliably quantify their effects. Interpreting changes in HBV prevalence by country or region of birth was further limited by a lack of information about when women migrated to Australia. Some HBV notifications classified as “unspecified” may actually have been acute infections, but their frequency should not have differed between maternal birth year groups, and would therefore not have affected our estimates of HBV prevalence. Finally, linkage errors are possible, but their rate is known to be low.

Conclusion

Analysing routine antenatal HBV screening data is a simple and cost-effective method for monitoring changes in HBV prevalence in both the general population and in some high risk populations. The newborn and childhood HBV vaccination programs in NSW have had a significant impact on HBV prevalence in Indigenous Australian women, but it is still substantially higher than among non-Indigenous women. HBV infection prevention programs for high risk groups should be targeted differently, with those for Indigenous Australians focused on regional and remote NSW, and those for migrant populations on major cities. Finally, our analysis could be repeated periodically to assess the ongoing impact of universal newborn HBV vaccination and future targeted programs on HBV prevalence in Australia.

Box 1 –
Hepatitis B notifications for primiparous women giving birth, by maternal birth year, New South Wales, 2000–2012


* HBV notification rates plotted against the median maternal year of birth for each maternal year of birth category (≤ 1981, 1982–1987, 1988–1991, 1992–1999).

Box 2 –
Association between HBV notifications* and maternal year of birth, year of giving birth, and region of residence

Median age (years)

Number of women


Univariate analysis


Multivariate analysis


Giving birth

Giving birth, with HBV record

Odds ratio (95% CI)

P

Adjusted odds ratio (95% CI)

P


Australian-born women, Indigenous

Maternal year of birth

≤ 1981

27.4

3057

40 (1.3%)

1

< 0.001

1

0.002

1982–1987

20.8

4509

45 (1.0%)

0.76 (0.50–1.17)

0.79 (0.51–1.23)

1988–1999

18.8

4172

8 (0.2%)

0.15 (0.07–0.31)

0.20 (0.09–0.48)

Region of residence

Major cities

4916

24 (0.5%)

1

0.002

1

< 0.001

Regional/remote

6752

69 (1.0%)

2.08 (1.31–3.32)

2.23 (1.40–3.57)

Year of giving birth (per 5 years)

0.45 (0.34–0.61)

0.69 (0.49–0.97)

0.03

Australian-born women, non-Indigenous

Maternal year of birth

≤ 1981

30.7

227 608

227 (0.1%)

1

0.50

1

0.10

1982–1987

23.6

67 762

91 (0.1%)

1.35 (1.06–1.72)

1.47 (1.14–1.91)

1988–1999

19.9

24 259

18 (0.1%)

0.74 (0.46–1.20)

0.87 (0.54–1.44)

Region of residence

Major cities

242 392

298 (0.1%)

1

< 0.001

1

< 0.001

Regional/remote

77 195

38 (0.0%)

0.40 (0.29–0.56)

0.39 (0.28–0.55)

Year of giving birth (per 5 years)

1.04 (0.90–1.20)

0.99 (0.84–1.16)

0.90

Overseas-born women

Maternal year of birth

≤ 1981

31.7

116 659

2245 (1.9%)

1

0.10

1

0.001

1982–1987

25.2

29 431

580 (2.0%)

1.03 (0.93–1.12)

1.11 (1.01–1.22)

1988–1999

20.9

5487

129 (2.4%)

1.23 (1.03–1.47)

1.38 (1.15–1.67)

Region of residence

Major cities

144 926

2872 (2.0%)

1

< 0.001

1

< 0.001

Regional/remote

6621

82 (1.2%)

0.62 (0.50–0.77)

0.61 (0.49–0.77)

Year of giving birth (per 5 years)

0.92 (0.88–0.96)

0.89 (0.84–0.93)

< 0.001


* For the purposes of our analysis: defined as a record in the NSW Notifiable Conditions Information Management System of the detection of hepatitis B surface antigen (HBsAg) between January 1994 and December 2012 with the infection classified as being of unspecified duration (or not newly acquired). † For trend across categories of maternal birth year, calculated using the median maternal year of birth in each category. ‡ Adjusted for maternal year of birth, region of residence, and year of giving birth (5-year intervals).

Box 3 –
HBV notifications for non-Australian-born women giving birth for the first time, by region of birth

Mother’s region of birth

Maternal year of birth


≤ 1981


1982–1987


1988–1999


Number of women

Proportion with HBV record (95% CI)

Number of women

Proportion with HBV record (95% CI)

Number of women

Proportion with HBV record (95% CI)


North-East Asia

21 159

4.4% (4.2–4.7%)

4455

5.4% (4.7–6.1%)

583

11.2% (8.8–14.0%)

South-East Asia

22 824

4.3% (4.2–4.7%)

4596

4.5% (4.0–5.2%)

680

4.1% (2.9–5.9%)

Oceania (excluding Australia)

12 124

1.1% (0.9–1.2%)

3335

1.0% (0.7–1.4%)

1260

0.7% (0.4–1.4%)

Sub-Saharan Africa

4409

0.9% (0.6–1.2%)

965

3.0% (2.1–4.3%)

244

4.9% (2.8–8.4%)

North Africa or Middle East

9064

0.6% (0.5–0.8%)

4592

0.5% (0.3–0.8%)

1368

0.9% (0.5–1.5%)

South or Central Asia

12 268

0.3% (0.3–0.5%)

7292

0.4% (0.3–0.6%)

831

0.2% (0.1–0.9%)

Europe

25 899

0.2% (0.1–0.2%)

2764

0.4% (0.3–0.8%)

303

0.3% (0.1–1.9%)

Americas

7262

0.04% (0.0–0.1%)

1084

0.3% (0.1–0.8%)

126

0.0% (0.0–3.0%)

Other

1650

0.6% (0.3–1.0%)

348

0.9% (0.3–2.5%)

92

0.0% (0.0–4.0%)